
M ODELING A REAL APPLICATION AS A PLANNING PROBLEM BY USING UML.P

TIAGO S. VAQUERO
1, FLAVIO TONIDANDEL

2, LELIANE N. BARROS
3, JOSÉ REINALDO SILVA

1

1Escola Politécnica – Universidade de São Paulo
Design Lab. – PMR – Dep de Engenharia Mecatrônica e Sistemas Mecânicos - São Paulo, Brazil

2Centro Universitário da FEI
IAAA Intelligence Applied in Automation Lab - São Bernardo do Campo, Brazil

3Instituto de Matemática e Estatística – Universidade de São Paulo

Departamento de Ciência da Computação - São Paulo, Brazil

E-mails: tiago.vaquero@poli.usp.br,flaviot@fei.edu.br,
leliane@ime.usp.br, reinaldo@usp.br

Abstract There is a great interest in the automated planning community to apply all developments already achieved
in the area to real applications. Such scenario makes the community to focus on Knowledge Engineering (KE) applied in
modeling of planning problems and domains. The first ICKEPS (International Competition on Knowledge Engineering
for Planning and Scheduling) showed powerful tools, such as itSIMPLE, that can help designers of planning domains to
better understand, specify, verify and validate their models. The itSIMPLE tool proposes the use of UML to Planning
Approach, denominated UML.P, during planning domain modeling process. This paper reports on the exposure of
UML.P to a real application, e.g., the problem of sequencing cars in an assembly line. This modeling experience, using a
classical manufacturing problem, provides some insights and considerations that can contribute to a general KE process
for planning.

Keywords Automated Planning, Knowledge Engineering, Domain Modeling

Resumo Existe um grande interesse da comunidade cientifica de planejamento automático em aplicar todos os
desenvolvimentos alcançados na área recentemente em situações reais. Tal cenário indica um foco de pesquisa em
Engenharia do Conhecimento (EC) aplicada a modelagem de problemas e domínios de planejamento. O primeiro
ICKEPS (International Competition on Knowledge Engineering for Planning and Scheduling International Competition
on Knowledge Engineering) mostrou ferramentas poderosas, como o itSIMPLE, que auxilia os modeladores de domínios
de planejamento a entender, especificar, verificar e validar seus modelos. A ferramenta itSIMPLE propõe, para o processo
de modelagem, o uso da UML for planning approach, denominada UML.P. Este artigo apresenta o uso da UML.P em
uma aplicação real, e.g., o problema do sequenciamento de carros em linhas de montagem. Esta experiência de
modelagem, usando um problema clássico de manufatura, fornece considerações importantes que podem contribuir para
o processo geral de EC para planejamento.
Palavras-chave Planejamento Automático, Engenharia do Conhecimento, modelagem de domínio

1. Introduction

The recent efficiency improvement and the rising
demand for planning systems have become a great
motivation to try applying all developments already
achieved by the planning community in real and
complex applications. In this scenario, Knowledge
Engineering methodologies become more and more
important since modeling actions is considered to be
the bottleneck of practical planning systems
development. This has been addressed in several
initiatives, such as the first International Competition
on Knowledge Engineering for Planning and
Scheduling - ICKEPS 2005. This competition
brought extremely important modeling issues and
showed powerful tools, such as itSIMPLE [Vaquero
et al 2005] and GIPO [Simpson 2005], that can help
designers to better understand, specify, verify and
validate their planning models. The itSIMPLE tool
performs analysis and verification of requirements in
a planning domain model, uses UML.P, which is a
special planning approach from UML [OMG 2001],
as an object-oriented model specification and

visualization which can be used to unify different
modeling perspectives from planning experts, domain
experts and stakeholders.

This paper is an extended version of [Vaquero et
al 2006] that describes an experience on the exposure
of UML.P to a real application such as the Car
Sequencing problem in an assembly line. This is a
classical manufacturing problem which encompasses
many challenging features such as planning with
resources, sequencing, scheduling, optimization, and
others. The Car Sequencing problem is based on the
daily job of factories where a production day to each
ordered vehicle must be assign according to
production lines capabilities and delivery dates. This
interesting domain was extracted from the fourth
ROADEF Challenge 2005 [Nguyen 2003] where
researchers explored the requirements and scheduling
difficulties encountered in industrial applications.

Following, the paper presents the basic concepts
of modeling with UML using the planning approach
(UML.P). Next, it presents the requirements for the
problem and an overview of the itSIMPLE modeling
method followed by the generated UML.P model. It

then presents the translations from UML.P to PDDL
[Fox and Long, 2003] followed by the verification of
the PDDL model with results. Finally, the paper ends
with some modeling considerations, suggestions to
future works and conclusions.

2. Modeling with UML – The Planning Approach

The UML – Unified Modeling Language is one of the
most used languages to model a great variety of
applications [D´Souza and Wills 1999]. Besides, the
UML has flexibility to attend many kind of models in
an object-oriented fashion.

Among all diagrams of UML, the class diagram
is the most known diagram for representing and
modeling the static structure of object-oriented
systems. However, all details of the structure cannot
be easily represented and expressed only in the class
diagram. For those additional representations, there
are others diagrams and a formal constraint
specification language called Object Constraint
Language – OCL [OMG 2003]. In OCL, constraints
are Boolean expressions composed with logical
connectives as in predicate calculus. This constraint
language can describe invariants and derivated rules
on classes, pre and post conditions on actions and it
supports universal and existential quantifications.

Since UML is a general purpose modeling
language, some specification features are intrinsically
related to planning domains. For that reason, the
UML.P (UML in a Planning Approach) was firstly
defined at [Vaquero et al 2005] as a way of using the
general UML for the planning matters where the
automated planning concepts are specified and
modeled. The UML.P approach has been improved
and refined in this work.

This approach first considers relationships
between planners, domains and planning problems. In
a planning context, the modeling process follows the
principles that: domains have their own description
and specification (including static structure, dynamic
behavior, etc); problems are associated to domains
and they have their own constraints initial condition
description and goal description; planners plan over
associated problems and domain descriptions. The
following descriptions of UML diagrams show how
designers can specify and better understand their
planning domains.

The Use Case diagram models the domain in the
highest abstraction level where the domain scope is
firstly defined. This diagram facilitates the
unification of the viewpoints from domain experts,
stakeholders and planning experts.

In UML, Use Case specifications are usually
described in natural language in the desired
abstraction level, but UML.P makes it different.
Since natural language specification can create
ambiguities and redundancies, a proposal of using a

structured Use Case specification contributes to
minimize these problems [Silva and Santos 2004].

Other important diagram in UML for planning is
the Class diagram. The class diagram is a
representation of the planning domain static structure
and concepts showing the existing entities, their
relationships, their features, methods (actions) and
constraints. Classes, Class attributes and associations
between classes give a visual notion of the semantic.

In order to specify the dynamic behavior of
actions, the StateChart diagram is necessary where it
is possible to define their pre and pos conditions.
This diagram is very useful to represent entities that
perform dynamic behavior. Usually all actions
defined in the class diagram are better specify in this
diagram.

Any class in Class diagram has its own
StateChart diagram specially those that perform
actions. Each diagram does not intend to specify all
changes caused by an action, instead, it shows only
the changes that it causes in an object of the
StateChart diagram’s class. The constraints on the
Class diagram and all the pre and post conditions on
the StateChart diagram are specified using the
language OCL.

A problem statement in a planning domain is
characterized by a situation where only two points are
known: the initial and goal state. The diagram used to
describe these states is called Object Diagram or
Snapshots [D´Souza and Wills 1999].

A snapshot is a picture of a specific time and an
instantiation of the domain structure. Such
instantiation represents features such as: how many
objects are in the problem; what are their classes;
what are the values of each object attribute and how
they are related with each other. In fact, a planning
problem is composed by two Object Diagrams, one
describing an initial state and another describing a
partial or entire goal state. Additional constraints
related to the problem can be specified also using
OCL.

3. Car Sequencing as a Planning and Scheduling
Problem

In the Car Sequencing planning and scheduling
process, customer orders are sent to car factories in
real-time. The factories have to assign daily a
production goal to each ordered car according to the
production line capabilities, constraints and delivery
dates. Then, factories have to schedule the order of
the vehicles to be put on the line for each production
day, while satisfying a set of complex requirements
and constraints of the plant shops. A car will be
manufactured in the following order: Body, Paint and
Assembly.

Figure 1: Use Case diagram for Car Sequencing domain

This challenging planning and scheduling

manufacturing problem encompasses interesting
features such as planning with resources, sequencing,
job-shop, scheduling, optimization, cost
minimization, flexibility and others that make the
problem even more complex when combined. All this
aspects make this planning/scheduling domain an
excellent challenge for a planning driven modeling
process such as the proposed UML.P.

The Car Sequencing problem requirements that
will be used as the running example throughout the
paper was extracted from an important system
competition called ROADEF Challenge where
researchers explored the requirements and difficulties
encountered in real industrial applications. The fourth
edition, called ROADEF Challenge 2005 brought the
car sequencing problem provided by RENAULT Co.
which will be described in the following by the given
requirements presented by [Nguyen 2003].

3.1. Domain and Problem Requirements

The considered real sequencing problem focuses on
the requirements of the paint shop and the assembly
line, since body shop does not constraint the daily
schedule. The order of the scheduled vehicles can not
be changed during painting and assembling for a
production day. Generally, each vehicle receives
identification before getting into the paint shop
containing: its identifier; its sequence rank in the
production day given by the planning/scheduling
system; the production date of the vehicle; its paint
color and what special features the vehicle will
receive at assembly. Following, an overview of the
paint shop requirements and assembly line is showed.

Paint shop requirements. This part of the plant has to
consider the minimization of paint solvent which is
used to wash spray guns each time the paint color is
changed between two consecutive cars. Implicitly
there is a requirement to group vehicles together by
paint color. This is a clear necessity to attempt to
minimize the spray gun washes. In other words, a
necessity of schedule the longest paint color batches
possible [Nguyen 2003].

Assembly line requirements. The most important
requirement in the assembly line is to smooth the
workload. Cars that need special features (for

instance, air conditioning, sunroof, etc.), requiring
extra assembly operations, have to be evenly
distributed throughout the vehicle sequence in order
to avoid assembly line overloads.

Figure 2: Activity diagram for painting a vehicle

The vehicles may not exceed a given quota over any
sequence of vehicle. This requirement is associated to
a ratio constraint N/P for each special feature which
means that at most N vehicles in each consecutive
sequence of P vehicles has this special feature. The
violation of each special feature ratio N/P must be
minimized by the planner. As described in [Nguyen
2003], this assembly line requirement is a soft
constraint.

4. UML.P Model Representation

The UML.P representation for the running example
will be presented first by the Domain modeling and
then by the Problem modeling.

4.1. Domain Modeling

From the analysis and discussion on the car
sequencing problem requirements described
previously, it was possible to define the Domain
scope using the Use Case diagram in a high level of
abstraction. Figure 1 shows the resulting use case
diagram where there are three main agents and three
use cases. These three agents (or actors) are the only
entities that can act over the domain: Transporter
puts the vehicles on the line; SprayGun paints the
vehicles in a line; Assembler assembles the vehicles
in an assembly line. The entity Transporter was
included in the domain for a better matching between
model and real application.

In order to better clarify what really happens at
the “Paint Vehicle” use case it was used the Activity
Diagram for a visual explanation. Figure 2 shows
such diagram. The flow at Figure 2 starts at the left
black circle and it ends at the right black circle. This
activity diagram summarizes the role and capabilities
of the SprayGun in the domain scope.

Figure 3: Class diagram for the Car Sequencing Domain

In order to structure all the static concepts of the
domain with an object-oriented approach, the Car
Sequencing Class diagram was built. Figure 3 shows
the Class diagram. Observe that, in Figure 3, the class
Vehicle has an attribute paintColor of type Color and
that SprayGun Class has an association 1 to 1 with
Color Class. In fact, we can say that in UML an
association from X to Y with multiplicity 1 to 1 is
similar to an attribute of the class X.

Figure 4: StateChart diagram – Vehicle and Transporter

In order to model the dynamic behavior of the Car
Sequencing domain it was necessary to use the
StateChart diagram. Following the UML.P, the
classes Vehicle, Tranporter, SprayGun and
Assembler require a StateChart diagram. Each
diagram is specified by using an object-focused
specification. For example, when building the
Vehicle StateChart diagram, the elements that appear

at this diagram only concern to the vehicles as a
single object. This object-focused specification helps
to separate context and model what is important to
the object. It is in this diagram where the use of OCL
becomes very important and essential. The figures 4
and 5 show each one of these four diagrams.

Figure 5: StateChart diagram – SprayGun and Assembler

Unifying all the StateChart diagrams through pre and
post conditions of each action specified we have the
whole OCL action specification. Following, some
action examples in OCL will be given with some
design solutions

In the action of figure 4, there is an association
between two classes, Vehicle and SpecialFeatures,
called has that goes from Vehicle to SpecialFeatures
with a multiplicity of 0..* for both connections. This
association can have role names that identify each
connection. However, if there is no role name, we can
use the name of the class to identify that connection.
In the action, therefore, we can call the set of
SpecialFeatures that is related to an object Veh1 of
Vehicle only by call Veh1.specialFeatures, for
instance.

Therefore, with role names and multiplicity, we
can operate sets of objects of classes connected by an
association and expression like:

veh.specialFeature � forall (spe: SpecialFeature|
spe.assemblyLine � exists(a: AssemblyLine|a = ayl))

It can be semantically translated as: “there is an
assembly line with all special features of a vehicle
veh”. Another example is the use of the
lastPaintedSeqRank and lastAssembledSeqRank
attributes to synchronize the action if paint and the
action of assemble. This is done by making the spray
gun paint only under the condition that the last car
painted was already assembled, i.e.,
lastPaintedSeqRank = lastAssembledSeqRank. This
fact avoids creating vehicle buffers between paint
shop and assembly. The resulting action is:

context SprayGun::paint(veh: Vehicle, col: Color, abl:
Assembler, ayl: AssemblyLine)
pre: self.belongsTo = ayl and self.currentColor = col
and veh.paintColor = col and veh.seqRank =
self.lastPaintedSeqRank + 1 and self.batchCounter <
self.paintBatchLimit and abl.worksOn = ayl and
self.lastPaintedSeqRank = abl.lastAssembledSeqRank
and veh.assemblyLine = ayl and veh.painted = false
and veh.assembled = false
post: self.batchCounter = self.batchCounter + 1 and
self.lastPaintedSeqRank = veh.seqRank and if
(self.cleaned = true) then self.cleaned = false

endif and veh.painted = true

4.2. Problem Modeling

Optimization aspects are extremely important in the
car sequencing domain. Since these aspects concern
to the problem in the form of solution constraints, it
was preferable to model optimization after having the
whole domain model. In our current example the
critical actions for optimization are the changeColor
(context SprayGun) and assemble since we need to
reduce the paint solvent and also to penalize the
sequence chosen by the planner every time each
value of featureCouter exceed the attribute value N,
in a sequence of P car, of the respective
SpecialFeature. For these restrictions, two variables
are declared: numberPaintColorChanges and
numberViolations. These two additional
specifications are presented in OCL the respective
actions.

Since a Planning Problem requires an initial state
and a goal description, UML.P uses the object
diagram in order to describe these two states. This
process is done by only instancing the class diagram
in an object diagram where the attributes of the
objects receive values. For example, instantiating
vehicles V1, V2, V3 and V4 requiring color Red, Red,
Blue and Black respectively and so on.

5. Translating UML.P Model to PDDL

Since the Sequence Car domain was already modeled
in UML.P, it was easier to specify the PDDL model
than if we try to model this domain in PDDL from
scratch. During translation process it was clear that
PDDL has some limitation such as: it is not possible
to use subsequent conditional effects (when) inside a
universal quantification which results in a code with
some repetition.

The most complicated OCL expressions
translated were those that use universal and
existential quantifications, but it was completely
feasible, since they are semantically the same. During
the translation process no domain characteristics
were left behind, every expression was possible to be
translated, but many constraints such as multiplicities
were lost. Some of the multiplicity constraints can be
expressed using PDDL 3.0 [Gerevini and Long 2005]
which will be left for future work.

OCL does not express optimization functions
such as :metric in PDDL, for instance (:metric minimize

(+ (numberViolations) (numberPaintColorChanges)), but it can
model something similar using value invariants.

6. Verification of PDDL Model

To verify the model described in PDDL, generated
by our modeling approach, we choose the Metric-FF
[Hoffmann 2003]. Metric-FF is a forward heuristic
planner which uses a relaxed plan graph to provide
heuristic estimates of the distance of the current state
to the goal state.

Our initial purpose is to analyze the
expressiveness and soundness of our model.
Therefore, we are interested in the quality of the
solutions that can be found by the Metric-FF planner
despite of time for processing it.

In order to make this verification, it was
generated two main scenarios in PDDL. The first
scenario (s1) represents the set of problems that focus
only on the optimization of the paint solvent, i.e., the
metric function includes only the minimization of the
number of paint color changes. The second scenario
(s2) focuses on the optimization of the workload on
an assembly line, i.e. the minimization of sequence
violations.

Since an industrial application manages the
planning/scheduling process using Simulated
Annealing or Constraint Satisfaction Programming
(CSP) [Brucker 2004], the Metric-FF results for these
scenarios were compared with some of these systems
by using a solution-checking tool to check the
validity and quality of the planning/scheduling
solutions, provided by the ROADEF competition
organizers. This solution-checking tool penalizes
each time there is a constraint violation in a solution.
Table 1 shows the results.

Table 1: Results of the solution quality comparing Metric-FF, two Simulated Annealing systems (A1 and A2) and one CSP (C1). Score 0
means an excellent solution. Spf means special features.

Scenario Problem Metric-FF A1 A2 C1
6 cars 2 colors 10000 10000 10000 10000
8 cars 2 colors 30000 10000 40000 10000 s1
8 cars 3 colors 50000 20000 30000 20000
6 cars 1 spf 0 0 0 0
8 cars 1 spf 0 0 10000 0
6 cars 2 spf 0 0 0 0
8 cars 2 spf 2000 0 60000 0

s2

8 cars 3 spf 2000 0 90000 0

The Metric-FF solutions (output) have similar

qualities when compared with the others. By analysis
the results we can say that planning domain model,
created by UML.P methodology, is correctly leading
the planner to find high quality solutions, very similar
to those generated by dedicated scheduling
techniques. The analysis also encourages the use of
planning system to real domains as well as its
improvements.

7. Future Works and Conclusions

This paper has showed a simplified real application,
the Car Sequence problem, extracted from the
ROADEF Challenge 2005, modeled in UML.P. The
model, initially described in UML.P, was translated
to PDDL and verified by Metric-FF planner
[Hoffmann 2003].

Many difficulties that a designer can find when
modeling a domain from scratch using PDDL can be
reduced and sometimes completely overcame when
using UML.P and OCL. First, object-oriented
approaches are more intuitive than declarative and
action driven languages like PDDL. Second, the
UML has diagrams that can lead the designer to
discover the essences of the model and the correct
semantic of the entire application separating domain
and problem concerns. Third, the UML.P permits
non-planning experts to model their domains without
the need of a PDDL expert.

For the future, we intend to implement the new
features incorporated by the ROADEF domain into
the itSIMPLE tool. Since the concept of the
itSIMPLE tool is to be compatible with PDDL, the
tool will be improved to deal with new versions of
PDDL like version 3.0 (Gerevini and Long 2005).
The itSIMPLE tool will also incorporate a complete
translation of models to and from PDDL in order to
let the designer a great flexibility to choose the way
to export and use their models.

References

Brucker, P. 2004. Scheduling Algorithms, 3rd
edition. Springer-Verlag New York, Inc.

D’Souza, F. D. and Wills, A. C. 1999. Object,
Components, and Frameworks with UML – The

Catalysis Approach. Addison-Wesley. USA and
Canada.

Fox, M. and Long, D. 2003. PDDL 2.1: An
Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial
Intelligence Research 20:61-124.

Gerevini, A. and Long, D. 2005. Plan Constraints
and Preferences in PDDL3 – The Language of
Fifth International Planning Competition.
Technical Report, Department of Eletronics for
Automation, University of Brescia, Italy, August
2005.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence
Research. Accepted for special issue on the 3rd
International Planning Competition.

Nguyen, A. 2003. Challenge ROADEF’2005: Car
Sequencing Problem. Renault - Information
System and Technologies - Advanced Studies.
France.

OMG - Object Management Group, 2001. Unified
modeling language specification: version 1.4.

OMG - Object Management Group, 2003. OCL 2.0 –
Object Constraint Language.

Simpson, R. M. 2005. GIPO Graphical Interface for
Planning with Objcets. ICAPS
2005 Competition on Knowledge
Engineering for Planning and Scheduling,
Monterey, California, USA.

Vaquero, T.S.; Tonidandel, F.; Silva J. R. 2005. The
itSIMPLE tool for Modeling Planning Domains.
ICAPS 2005 Competition on Knowledge
Engineering for Planning and Scheduling,
Monterey, California, USA.

Vaquero, T.S.; Tonidandel, F.; Barros, L. N.; Silva J.
R.. 2006. On the use of UML.P for Modeling a
Real application as a Planning Problem.
Proceedings of ICAPS 2006 (Short paper).
Cumbria, UK.

Silva, R. and Santos, E. A . 2004. Applying petri nets
to requirements validation In: IFAC Symposium
on Information Control Problems in
Manufacturing. Salvador, 2004. INCOM'04 :
Abstracts.Salvador : IFAC, p. 1.

